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Introduction

Geophysical  data  almost  always  require  extensive  data  analysis  before  any 

geological or engineering interpretation can be made. Generally, this analysis includes 

four major steps:

I) Checking for various acquisition errors and noises in the data and editing the 

records to correct for these errors and reduce noise.

II) Transformations of the data and their presentation in multiple forms emphasizing 

certain targets or aspects of the data. For example, sorting seismic records into 

common-midpoint gathers allows analyzing specific areas  within the subsurface. 

Band-pass  or  spatial  filtering of  seismic  waveforms or  gravity  readings  allow 

reducing the noise and reveal targets in depth. Such transformations may also 

include numerous “corrections” removing undesirable effects from the data, such 

as static corrections in seismic work or drift,  free-air,  and other corrections of 

gravity measurements.

III) Presentation of the data in various forms, such as by dependencies on the source, 

receiver or mid-point locations, or source-receiver distances. 

IV)The final step is data inversion, which consists of applying multiple algorithms or 

manual  interpretation  methods.  These  inversion  methods  are  often  strongly 

dependent on how the data are sorted, filtered, and transformed.
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Among the various geophysical disciplines, seismic data analysis involves by far 

the largest volumes of data and offers the greatest variety of methods in all steps I) –IV)  

above. In the first part of this project, we study one of such methods for refraction travel-

time analysis called the “Travel-Time Field” (TTF). This simple and elegant method was 

developed for deep seismic investigations in 1970-80s (Novotný,  1988). Later, it  was 

applied by Morozov et al.  (2005) and Jhajhria and Morozov (2013) but unfortunately 

seems to be still little used since then. We apply this method to the analysis of a near-

surface refraction seismic profile acquired during the 2025 UofS field school. 

In the second part  of the project,  we point  out an important analogy between 

seismic  travel-time  and  resistivity  data.  This  analogy  allows  greatly  improving  the 

resistivity  data  analysis  using  the  experience  from  seismic  work.  We  show  that  a 

“Resistance  Field”  (RF)  can  be  constructed  similarly  to  the  TTF,  yielding  numerous 

advantages for all data analysis steps I) –IV). In particular, derivation of an RF leads to a  

new approach to correcting for reciprocity and several significantly improved resistivity 

inversion methods. To our knowledge, the concept of RF has not been used in application 

to  resistivity  imaging,  or  at  least  not  mentioned  in  mainstream  textbooks  (e.g., 

Reynolds, 2011).

In the following sections,  I  will  first  describe the methods of  travel-time and 

resistivity fields and then apply them to 2-D refraction and 3-D resistivity data collected 

during the 2025 geophysics field schools (Morozov, 2025).

Seismic Travel-Time Fields

Although seismic travel times are measured at discrete positions of receivers, they 

usually represent sampling of contiguous intervals within which certain types of wave 

arrive at the surface: direct or refracted (head) waves, reflected from certain horizons or  

scatterers in the subsurface, or surface waves. For a given seismic phase, these piecewise-

continuous  functions  of  source  and  receiver  coordinates  represent  the  travel-time 

field (TTF).  For  first-arrival  travel  times,  the TTF is  usually  (in  the absence of  low-

velocity layers) a continuous function of all spatial coordinates.
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For a single seismic line (2-D seismic imaging), the TTF function can be viewed 

as a 2-D surface in the 3-D space of (source coordinate, receiver coordinate, travel time). 

Due to travel-time reciprocity (section below), this surface is always symmetric in the 

offset direction, and this property can be used to extract the source and receiver station 

static corrections. Most importantly, for a 2-D survey the travel-time field can be well 

sampled by the picks, allowing a direct interpolation of the time field. 

Figure 1 shows how such 2-D TTF was constructed for a deep crustal marine-land 

survey in British Columbia. In this Figure, each pair of slanting lines represent first-

arrival travel-time picks performed at one of the 29 receiving stations from numerous air-

gun shots along the fjord. Lines slanting upward to the right are graphs of the first-arrival  

times for waves travelling forward along the profile, and  the lines slanting upward-left  

are reversed recordings. Most importantly, the travel-time picks in Figure  1 are plotted 

against  the  midpoints between the sources and receivers,  so that  by the condition of 

reciprocity, for any pair of receivers R1 and R2 the graphs must intersect exactly halfway 

between them. Due to this property, all recorded travel times represent a function of the 

midpoint  coordinate  and  source-receiver  offset.  This  surface  is  the  TTF.  It  can  be 

interpolated in the (midpoint,offset) plane and plotted in colour, by contouring, or by 3-D 

perspective plots (Figure 2).

The slanting lines in Figure  1 (perfectly straight in Figure  2) are the  common-

receiver travel times corresponding to data points for which  xR=const .  By connecting 

points  with  fixed  source-receiver  offsets,  graphs  of  common-offset  travel  times are 

obtained (near-horizontal lines in Figure 1). Note that in Figure 2, the general change of 

colour in the offset (vertical) direction shows the variation of velocity with depth and the 

criss-crossing patterns of short-scale variations are due to the shallow velocity variations 

and statics.

By  using  the  TTF,  results  of  experiments  different  from  the  actual  seismic 

acquisition can be predicted without  knowing anything about  the subsurface velocity 

structure.  For  example,  if  we  extract  a  vertical  cross-section  from  the  surfaces  in 

Figures 1 or 2, a c  ommon-midpoint travel-time curve   is obtained (Figure 3). The shape of 

this curve can be inverted for 1-D layering beneath this midpoint. This estimation can be 
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repeated  at  every  midpoint,  giving  a  detailed  subsurface  velocity  structure 

(Novotný, 1988).

Figure 1. Construction of the first-arrival TTF for one refraction line from a deep crustal dataset 
ACCRETE (1998; airgun line along the Portland Canal fjord along the border of Alaska 
(USA) and British Columbia (Canada). 

Figure  2. TTF from another set of ACCRETE shots interpolated in the (midpoint,offset) plane. 
Colour shows the reduced travel  time  t red=t −offset /V R,  where  VR = 6.0 km/s is  the 
reduction velocity.
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For a 3-D refraction or reflection seismic dataset recorded on the Earth’s surface, 

there  are  two  independent  source  coordinates  ( xS , yS ) and  two  receiver  coordinates 

( xR , yR ).  Therefore,  the  TTF is  a  4-D surface  in  a  5-D space  ( xS , yS , xR , yR , t ).  It  is 

convenient to plot and analyze this surface by 2-D “slices” taken at common sources 

( xS , yS )=const ,  common  receivers  ( xR yR )=const ,  or  common  midpoints 

1
2

( xS+xR , yS+ yR )=const . 

Here is an assignment: Sketch and place here a schematic curve of 

travel_time(distance) dependence for first arrivals in a 3-layer velocity model like in 

geol335 labs. 

Label moveouts  1/V and crossover distances xc. 

Make arrivals start from nonzero time at x = 0 and label that time DtS

Figure  3.  Schematic  illustration  of  first-arrival  travel  times  in  a  layered  model  with  layer 
velocities  Vi increasing with depth.  From the slopes and cross-over distances  xc of  the 
travel-time segments, layer velocities  and depths are estimated.  Time  DtS is the source 
static or uphole time.

If  a  sufficiently  dense  source-receiver  sampling  is  available,  the  TTF can  be 

derived directly from the data by decomposing it into a spatially “smooth”  TTF t0 ( Si , R j ) 

which would have been recorded for sources and receivers located on the surface of a 

relatively  smooth  velocity  structure,  plus  additive  terms  specific  to  each  source  and 

receiver:

                           t (Si , R j )=t0 (Si , R j )+Δ t (Si )+Δ t ( R j ),  (1)

where Si is the ith source and Rj is the jth receiver in the seismic survey. The additive times 

describe the highly variable effects of the shallow subsurface which are not sampled by 

the available offset range and density of source and receiver coverage (Figure 3). These 
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additive terms are called “static times” or “statics”, and also “uphole times” for seismic 

sources placed in boreholes. These terms are also called the “short-wavelength statics” 

(because  they  vary  arbitrarily  for  each  shot  or  receiver)  in  Hampson-Russell  GLI3D 

program for refraction statics analysis (now included in GeoTomo software). 

The statics-corrected corrected TTF t0 ( Si , R j ) possesses an important property of 

the source-receiver reciprocity:

                                       t0 (Si , R j )=t0 ( R j , Si ).  (2)

This relation means that when a source and a receiver are switched places, the travel time  

between them must remain the same. Using this property, eq. (1) can be solved for Δ t ( Si ) 

and Δ t ( R j ) purely from the data, without assuming any velocity structure and modelling 

seismic wave propagation. 

Resistance Fields

The concept of TTF has a straightforward analog in electrical resistivity studies, 

which can be called the Resistance Field (RF) or resistance-matrix field. Similarly to  

Figure 3,  consider  a  single  source  point  (current-injection  electrode  A)  and  a  single 

receiver point (potential electrode M) which, however, are supposed to be one of many 

other recordings at adjacent points. Since another pair of electrodes is always required for 

resistivity measurements (injection current sink B and potential N), let us place them at  

the infinity, where the potential equals zero. This combination of electrodes is called the 

pole-pole array.

For a pole-pole array, the resistance of the circuit between electrodes A and M is

                             R ( A , M )=V ( MN )
I ( AB )

. (3)

Similar to the TTF (eq. (1)), this resistance  is a function of two pairs of coordinates of 

points A and M: R ( x A , y A , xM , yM ) and therefore it can be viewed as a 4-D surface in a 

5-D space of coordinates ( x A , y A , xM , yM , R ). Similar to eq. (1), the near-electrode effects 

can be approximated by contact resistances for  Δ R ( A i ) and  Δ R ( M j ),  and a “surface-
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consistent” resistance function R0 ( A i , M j ) obtained:

                      R ( A i , M j )=R0 ( A i , M j )+Δ R ( A i )+Δ R ( M j ). (4)

In Figure 4, this function R0 ( A i , M j ) is shown schematically as a function of the source-

receiver  distance  rAM.  Instead  of  the  linear  travel-time  segments  in  the  seismic  TTF 

(Figure 3) the characteristic shape of the RF is close to 1/distance. Also similar to the 

TTF reciprocity (eq. 2), the corrected RF satisfies the reciprocity relation

                                  R0 ( A i , M j )=R0 ( M j , A i ). (5)

 Sketch a s schematic curve for resistance(distance_from_source) for a pole-

pole resistivity survey.

Figure 4. Schematic distance dependence of resistance measured using a pole-pole array. 

Reciprocity Correction

Relations (1) and (4) lead to useful tools for travel-time or resistivity analysis in 

large and densely sampled datasets. A key initial step of this analysis consists in checking 

how well  the  recorded  data  satisfy  the  reciprocity  conditions  and  correcting  for  any 

mismatches in them. Note that correct reciprocity is extremely important for both travel-

time and resistivity data because data violating this condition  cannot be interpreted in 

terms of a subsurface structure. Mismatches in data reciprocity propagate into the model 

and  appear  as  spurious  structures  within  the  subsurface.  Thus,  reciprocity  must  be 

accurately enforced in any data before performing any type of inversion. 
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Using the first-arrival travel-time problem as an example, consider a 3-D dataset 

and  assume  that  we  have  some  algorithm  F(...)  allowing  to:  1)  subtract  the  current 

estimates of the source and receiver terms in eq. (1), and 2) interpolate the subtracted data 

at an arbitrary source location Si and receiver location Rj:

                      ~t0 (Si , R j )=F (Si , R j ; tobs −Δ t ( S ) −Δ t ( R ) ). (6)

This quantity is the current estimate of the corrected TTF t0 (Si , R j ). Because arguments Si 

and  Rj  of this function are arbitrary surface coordinates but not the specific source and 

receivers,  t0 (Si , R j ) is called the “surface-consistent” model for travel times.

Subtracting from t0 (Si , R j ) its values with the source and receiver switched places, 

we obtain the reciprocity error:

                                      δ rec (Si , R j )=~t0 (Si , R j )−~t0 ( R j , Si )=0. (7)

This error must equal zero for all i and j. Equations (6) and (7) give an inverse problem 

from which we can determine vectors Δ t ( S ) and Δ t ( R ). Note that this inversion contains 

an ambiguity  because  equations  (6)  are  invariant  with  respect  to  adding an arbitrary 

constant to all Δ t ( Si ) and subtracting the same constant from all Δ t ( R j ). This ambiguity 

can be removed by adding an additional requirement that t0 (Si , R j )→0 when R j → Si. For 

the RF case, this additional condition will be  R0 ( A i , B j )→0 when R j → ∞ or Si → ∞.

For the RF case, the “data interpolation” (i.e., approximate data-fitting) equation 

is  different.  In a practical electrical measurement, two current electrodes A, B and two 

potential  electrodes  M,  N  are  always  used,  and  the  basic  quantity  measured  in  the 

experiment is the cross-resistance (ratio of the voltage between M and N to the current 

from A to B):

                      R AB , MN=
V MN

I AB

=R0 ( A , M ) − R0 ( A , N ) − R0 ( B , M )+R0 ( B , N ). (8)

In this equation, function R0 ( P1 , P2 ) is defined for arbitrary points P1 and P2 and plays the 

role  of  the  interpolation  function  F(...)  above.  Note  that  the  contact-resistance  terms 

Δ R ( A i ) and  Δ R ( M j ) in eq. (4) are cancelled out in this 4-electrode measurement. The 
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measured  cross-resistance  in  the  left-hand  side  of  eq.  (8)  is  related  to  the  apparent 

resistivity usually reported for the electrode array:

                                                   ρa=kR AB , MN, (9)

where k is the geometric factor for the array. For instance, for an ordinary Wenner (“a”) 

array,  k=2 π a,  where  a is  the  spacing  between  each  pair  of  electrodes  in  the 

sequence A - M - N - B. 

Equations (8) can be inverted for all data by selecting a suitable parametrization 

of  function R0 ( P1 , P2 ) by a relatively small number of parameters analogously to eq. (6) 

for TTF.  Finding this parametrization is the principal task of this project, and it can be 

achieved by using basis functions described in the next section. Also similar to the case 

of the TTF  (eq. 6), the inverse problem in eq. (8) is “under-constrained” because all data 

readings are limited to double differences between pairs of electrodes. This difficulty can 

be remedied by using “regularization” or “damping” of the inverse, or using the so-called 

“prior constraints” or other methods. 

The interpolation and solution procedure in eqs. (6) - (8) may be nonlinear, and 

therefore they need to be iterated until a suitable solution for vectors Δ t ( S ) and Δ t ( R ) or 

function R0 ( A , M ) is obtained.

TTF or RF interpolation

The interpolation  procedure  for  functions  F(...)  or  R0(...)  required  for  solving 

eqs. (6) or (8) needs to be performed carefully. For seismic TTFs, cross-over distances 

need to be determined first and linear or slightly nonlinear interpolation can then likely be 

used  between  these  distances  (Figure 3).  For RF,  since  the  principal  dependence  of 

resistance on distance  r between electrodes A and M is  R0 (r ) ≈ const /r (Figure 4), it is 

better to interpolate the product y (r )=r R (r ). Note that this product is proportional to the 

apparent resistivity for the pole-pole array. The “static” contact-resistance shifts  Δ t ( S ) 

and Δ t ( R ) will be represented by possible trends y (r ) ∝rnear point r = 0, and therefore 

the interpolation should account for such trends.  It is also important to ensure that the 

interpolated dependencies are smooth functions of both r and azimuth. 
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To perform the interpolation satisfying the above requirements, we split the range 

of distances r ∈ [0 , rmax ) into several intervals and use the so-called Wiggins polynomial 

basis functions within them. These functions are of two kinds: one having the value of the 

basis function equal one at the central node (Figure 5, top) and another one with the value 

of zero but derivative equal one (bottom in the Figure). At the ends of the interval, both 

the values and derivatives of each Wiggins functions equal zero. 

Figure  5.Two types of Wiggins (polynomial) basis functions in two intervals joining at point  
x = 0 (blue and red). These functions are often used for constructing layered Earth models 
in  earthquake  seismology,  and  they  can  be  used  for  approximating  smooth  distance 
dependencies of the TTF or RF in this project. 

New approach to inversion using TTF or RF

After the reciprocal-point corrected and surface-consistent TTF  t0 ( Si , R j ) or RF 

R0 ( A i , M j ) is obtained, it can be used to implement new inversion approaches. The first 

of  these  approaches  constrains  the  key  features  of  the  velocity  or  resistivity  model 

without utilizing complex 3-D algorithms. This method was suggested for seismic TTFs 

by Novotný (1988).  At several (or even each) midpoints selected within the study area, 

common-midpoint profiles will be extracted from the TTF (RF) traversing the study area 



11

at several azimuths. The profiles will be examined by using 1-D inversion methods for 

locations of boundaries and velocity (or resistivity) variations, and the final model will be 

determined by comparing or merging these 1-D models. For the present shallow work, it 

will  be  particularly  interesting  to  correlate  the  variations  of  the  model  with  surface 

topography.

The  second  new  inversion  method   applies  specifically  to  resistivity  or  IP 

problems  and  utilize  the  inversion  methodology  accepted  in  this  field.  The  usual 

approach to 2-D or 3-D multichannel resistivity inversion or ERT (electrical resistivity 

tomography) consists in extracting some suitable 4-electrode groups (AB,MN) from the 

data  which would be spaced as  uniformly as  possible,  have similar  orientations,  and 

contain a range of dimensions covering the target depths. Unfortunately, this selection is 

practically impossible with real data because the existing 3-D arrays are usually irregular 

in shapes and strongly biased toward shorter electrode spacings.

The RF method allows us to resolve the above problem and produce a perfectly 

regular  set  of  “virtual” (AB,MN) arrays with controlled densities  of  sampling at  any 

depth. Once the corrected RF R0 ( P1 , P2 ) is derived for arbitrary locations P1 and P2, it can 

predict readings for arbitrary electrical-resistivity experiments in the area. Thus, we can 

construct a grid of equal-sized and regularily-spaced 4-electrode arrays directly from 3-D 

field  resistivity  data.  These  reciprocal-error  free  and  regularly-spaced  and  shaped 

“virtual” data can be used to plot pseudo-depth volumes or invert them using standard 

inversion algorithms, ensuring good stability and quality of the inversion.

... need to add sections about results and conclusions ...

Conclusions

...



12

The improvement in the resistivity analysis method made in this work should also 

apply to the analysis and presentation of Induced Polarization (IP) data.
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