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Introduction

Geophysical data almost always require extensive data analysis before any
geological or engineering interpretation can be made. Generally, this analysis includes

four major steps:

I) Checking for various acquisition errors and noises in the data and editing the
records to correct for these errors and reduce noise.

II) Transformations of the data and their presentation in multiple forms emphasizing
certain targets or aspects of the data. For example, sorting seismic records into
common-midpoint gathers allows analyzing specific areas within the subsurface.
Band-pass or spatial filtering of seismic waveforms or gravity readings allow
reducing the noise and reveal targets in depth. Such transformations may also
include numerous “corrections” removing undesirable effects from the data, such
as static corrections in seismic work or drift, free-air, and other corrections of
gravity measurements.

IIT) Presentation of the data in various forms, such as by dependencies on the source,
receiver or mid-point locations, or source-receiver distances.

IV) The final step is data inversion, which consists of applying multiple algorithms or
manual interpretation methods. These inversion methods are often strongly

dependent on how the data are sorted, filtered, and transformed.



Among the various geophysical disciplines, seismic data analysis involves by far
the largest volumes of data and offers the greatest variety of methods in all steps I) —IV)
above. In the first part of this project, we study one of such methods for refraction travel-
time analysis called the “Travel-Time Field” (TTF). This simple and elegant method was
developed for deep seismic investigations in 1970-80s (Novotny, 1988). Later, it was
applied by Morozov et al. (2005) and Jhajhria and Morozov (2013) but unfortunately
seems to be still little used since then. We apply this method to the analysis of a near-

surface refraction seismic profile acquired during the 2025 UofS field school.

In the second part of the project, we point out an important analogy between
seismic travel-time and resistivity data. This analogy allows greatly improving the
resistivity data analysis using the experience from seismic work. We show that a
“Resistance Field” (RF) can be constructed similarly to the TTF, yielding numerous
advantages for all data analysis steps I) —IV). In particular, derivation of an RF leads to a
new approach to correcting for reciprocity and several significantly improved resistivity
inversion methods. To our knowledge, the concept of RF has not been used in application
to resistivity imaging, or at least not mentioned in mainstream textbooks (e.g.,

Reynolds, 2011).

In the following sections, I will first describe the methods of travel-time and
resistivity fields and then apply them to 2-D refraction and 3-D resistivity data collected

during the 2025 geophysics field schools (Morozov, 2025).

Seismic Travel-Time Fields

Although seismic travel times are measured at discrete positions of receivers, they
usually represent sampling of contiguous intervals within which certain types of wave
arrive at the surface: direct or refracted (head) waves, reflected from certain horizons or
scatterers in the subsurface, or surface waves. For a given seismic phase, these piecewise-
continuous functions of source and receiver coordinates represent the travel-time
field (TTF). For first-arrival travel times, the TTF is usually (in the absence of low-

velocity layers) a continuous function of all spatial coordinates.



For a single seismic line (2-D seismic imaging), the TTF function can be viewed
as a 2-D surface in the 3-D space of (source coordinate, receiver coordinate, travel time).
Due to travel-time reciprocity (section below), this surface is always symmetric in the
offset direction, and this property can be used to extract the source and receiver station
static corrections. Most importantly, for a 2-D survey the travel-time field can be well

sampled by the picks, allowing a direct interpolation of the time field.

Figure 1 shows how such 2-D TTF was constructed for a deep crustal marine-land
survey in British Columbia. In this Figure, each pair of slanting lines represent first-
arrival travel-time picks performed at one of the 29 receiving stations from numerous air-
gun shots along the fjord. Lines slanting upward to the right are graphs of the first-arrival
times for waves travelling forward along the profile, and the lines slanting upward-left
are reversed recordings. Most importantly, the travel-time picks in Figure 1 are plotted
against the midpoints between the sources and receivers, so that by the condition of
reciprocity, for any pair of receivers R; and R, the graphs must intersect exactly halfway
between them. Due to this property, all recorded travel times represent a function of the
midpoint coordinate and source-receiver offset. This surface is the TTF. It can be
interpolated in the (midpoint,offset) plane and plotted in colour, by contouring, or by 3-D

perspective plots (Figure 2).

The slanting lines in Figure 1 (perfectly straight in Figure 2) are the common-

receiver travel times corresponding to data points for which Xz=const. By connecting

points with fixed source-receiver offsets, graphs of common-offset travel times are

obtained (near-horizontal lines in Figure 1). Note that in Figure 2, the general change of
colour in the offset (vertical) direction shows the variation of velocity with depth and the
criss-crossing patterns of short-scale variations are due to the shallow velocity variations

and statics.

By using the TTF, results of experiments different from the actual seismic
acquisition can be predicted without knowing anything about the subsurface velocity
structure. For example, if we extract a vertical cross-section from the surfaces in

Figures 1 or 2, a common-midpoint travel-time curve is obtained (Figure 3). The shape of

this curve can be inverted for 1-D layering beneath this midpoint. This estimation can be



repeated at every midpoint, giving a detailed subsurface velocity structure

(Novotny, 1988).
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Figure 1. Construction of the first-arrival TTF for one refraction line from a deep crustal dataset
ACCRETE (1998; airgun line along the Portland Canal fjord along the border of Alaska
(USA) and British Columbia (Canada).
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Figure 2. TTF from another set of ACCRETE shots interpolated in the (midpoint,offset) plane.
Colour shows the reduced travel time t,.;=t— offset/V ,, where Vi = 6.0 km/s is the
reduction velocity.



For a 3-D refraction or reflection seismic dataset recorded on the Earth’s surface,
there are two independent source coordinates (Xs,ys) and two receiver coordinates
(XR,yR]. Therefore, the TTF is a 4-D surface in a 5-D space (XS,yS,XR,yR,t). It is
convenient to plot and analyze this surface by 2-D “slices” taken at common sources

(xs,ys)=const, common  receivers (nyR):const, or common midpoints

1 ,
E(XS+XR,y5+yR)=Const,

Here is an assignment: Sketch and place here a schematic curve of
travel_time(distance) dependence for first arrivals in a 3-layer velocity model like in

geol335 labs.
Label moveouts 1/V and crossover distances x..

Make arrivals start from nonzero time at x = 0 and label that time Ats

Figure 3. Schematic illustration of first-arrival travel times in a layered model with layer
velocities V; increasing with depth. From the slopes and cross-over distances x. of the
travel-time segments, layer velocities and depths are estimated. Time As is the source
static or uphole time.

If a sufficiently dense source-receiver sampling is available, the TTF can be
derived directly from the data by decomposing it into a spatially “smooth” TTF to(Si, R j)

which would have been recorded for sources and receivers located on the surface of a
relatively smooth velocity structure, plus additive terms specific to each source and

receiver:
t[S;,R;|=to[S;, R+ At[S,+At[R)], (1)
where S; is the i" source and R; is the j™ receiver in the seismic survey. The additive times

describe the highly variable effects of the shallow subsurface which are not sampled by

the available offset range and density of source and receiver coverage (Figure 3). These




additive terms are called “static times” or “statics”, and also “uphole times” for seismic
sources placed in boreholes. These terms are also called the “short-wavelength statics”
(because they vary arbitrarily for each shot or receiver) in Hampson-Russell GLI3D

program for refraction statics analysis (now included in GeoTomo software).

The statics-corrected corrected TTF t,(S;, R j) possesses an important property of

the source-receiver reciprocity:

toSi,R;|=t,[R,,S,]. )

This relation means that when a source and a receiver are switched places, the travel time

between them must remain the same. Using this property, eq. (1) can be solved for AI(S,»)

and At (R j) purely from the data, without assuming any velocity structure and modelling

seismic wave propagation.

Resistance Fields

The concept of TTF has a straightforward analog in electrical resistivity studies,
which can be called the Resistance Field (RF) or resistance-matrix field. Similarly to
Figure 3, consider a single source point (current-injection electrode A) and a single
receiver point (potential electrode M) which, however, are supposed to be one of many
other recordings at adjacent points. Since another pair of electrodes is always required for
resistivity measurements (injection current sink B and potential N), let us place them at
the infinity, where the potential equals zero. This combination of electrodes is called the

pole-pole array.
For a pole-pole array, the resistance of the circuit between electrodes A and M is

V|[MN|

R(A,M|= TaB] - 3)

Similar to the TTF (eq. (1)), this resistance is a function of two pairs of coordinates of

points A and M: R(X asYasXysy M] and therefore it can be viewed as a 4-D surface in a
5-D space of coordinates (X s YasXusYus R). Similar to eq. (1), the near-electrode effects

can be approximated by contact resistances for AR[A;| and AR(M ), and a “surface-



consistent” resistance function RO(Ai M j) obtained:

R[A;,M,|=Ry|A,,M |+AR(A,|+AR[M ). (4)

In Figure 4, this function Ry(A;, M j) is shown schematically as a function of the source-

receiver distance ram. Instead of the linear travel-time segments in the seismic TTF
(Figure 3) the characteristic shape of the RF is close to 1/distance. Also similar to the

TTF reciprocity (eq. 2), the corrected RF satisfies the reciprocity relation

Ry|A,,M,|=Ry(M},A,). (5)

Sketch a s schematic curve for resistance(distance_from_source) for a pole-

pole resistivity survey.

Figure 4. Schematic distance dependence of resistance measured using a pole-pole array.

Reciprocity Correction

Relations (1) and (4) lead to useful tools for travel-time or resistivity analysis in
large and densely sampled datasets. A key initial step of this analysis consists in checking
how well the recorded data satisfy the reciprocity conditions and correcting for any
mismatches in them. Note that correct reciprocity is extremely important for both travel-
time and resistivity data because data violating this condition cannot be interpreted in
terms of a subsurface structure. Mismatches in data reciprocity propagate into the model
and appear as spurious structures within the subsurface. Thus, reciprocity must be

accurately enforced in any data before performing any type of inversion.




Using the first-arrival travel-time problem as an example, consider a 3-D dataset
and assume that we have some algorithm F(...) allowing to: 1) subtract the current
estimates of the source and receiver terms in eq. (1), and 2) interpolate the subtracted data

at an arbitrary source location S; and receiver location R;:

&[S, R,|=F|[S,,R;;t” - At|S|- At[R]]. (6)

This quantity is the current estimate of the corrected TTF IO(S,- R ]) Because arguments S;
and R; of this function are arbitrary surface coordinates but not the specific source and

receivers, f, (5 i»R j) is called the “surface-consistent” model for travel times.

Subtracting from tO(Si ;R j) its values with the source and receiver switched places,

we obtain the reciprocity error:

)

rec (

Si’Rj):tN()(Si’Rj)_tN()(Rj’Si):O. (7)

This error must equal zero for all i and j. Equations (6) and (7) give an inverse problem
from which we can determine vectors A t(S] and A t(R|]. Note that this inversion contains
an ambiguity because equations (6) are invariant with respect to adding an arbitrary
constant to all At[S;| and subtracting the same constant from all At|R;). This ambiguity

can be removed by adding an additional requirement that IO(S,- ,R j) — 0 when R; - S,. For

the RF case, this additional condition will be R,[A;, B j) — 0 when R; -» @ or §; - o,

For the RF case, the “data interpolation” (i.e., approximate data-fitting) equation
is different. In a practical electrical measurement, two current electrodes A, B and two
potential electrodes M, N are always used, and the basic quantity measured in the
experiment is the cross-resistance (ratio of the voltage between M and N to the current

from A to B):

v
RAB,MN:I—MN:RO(A,M]—RO(A,N)—RO(B,M)+RO[B,N). (8)

AB

In this equation, function Ro(Pl, Pz) is defined for arbitrary points P; and P, and plays the
role of the interpolation function F(...) above. Note that the contact-resistance terms

AR(Al.) and AR(M j) in eq. (4) are cancelled out in this 4-electrode measurement. The



measured cross-resistance in the left-hand side of eq. (8) is related to the apparent

resistivity usually reported for the electrode array:

pa:kRAB,MNy 9)

where k is the geometric factor for the array. For instance, for an ordinary Wenner (“o.)
array, k=2ma, where a is the spacing between each pair of electrodes in the

sequence A - M - N - B.

Equations (8) can be inverted for all data by selecting a suitable parametrization
of function Ro(P1’P2) by a relatively small number of parameters analogously to eq. (6)
for TTF. Finding this parametrization is the principal task of this project, and it can be
achieved by using basis functions described in the next section. Also similar to the case
of the TTF (eq. 6), the inverse problem in eq. (8) is “under-constrained” because all data
readings are limited to double differences between pairs of electrodes. This difficulty can
be remedied by using “regularization” or “damping” of the inverse, or using the so-called

“prior constraints” or other methods.

The interpolation and solution procedure in egs. (6) - (8) may be nonlinear, and
therefore they need to be iterated until a suitable solution for vectors At ('S) and At(R) or

function R,(A, M| is obtained.

TTF or RF interpolation

The interpolation procedure for functions F(...) or Ro(...) required for solving
egs. (6) or (8) needs to be performed carefully. For seismic TTFs, cross-over distances
need to be determined first and linear or slightly nonlinear interpolation can then likely be
used between these distances (Figure 3). For RF, since the principal dependence of
resistance on distance r between electrodes A and M is Ry|r|~const/r (Figure 4), it is
better to interpolate the product y|r|=r R|r|. Note that this product is proportional to the
apparent resistivity for the pole-pole array. The “static” contact-resistance shifts At(S]
and At(R) will be represented by possible trends y|(r| e rnear point r = 0, and therefore
the interpolation should account for such trends. It is also important to ensure that the

interpolated dependencies are smooth functions of both r and azimuth.



To perform the interpolation satisfying the above requirements, we split the range

into several intervals and use the so-called Wiggins polynomial

of distances r € {O,Fmax
basis functions within them. These functions are of two kinds: one having the value of the
basis function equal one at the central node (Figure 5, top) and another one with the value
of zero but derivative equal one (bottom in the Figure). At the ends of the interval, both

the values and derivatives of each Wiggins functions equal zero.

Basis functions with displacements = 1 and derivatives = 0 at boundary x = 0
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Figure 5.Two types of Wiggins (polynomial) basis functions in two intervals joining at point
x = 0 (blue and red). These functions are often used for constructing layered Earth models
in earthquake seismology, and they can be used for approximating smooth distance
dependencies of the TTF or RF in this project.

New approach to inversion using TTF or RF

After the reciprocal-point corrected and surface-consistent TTF IO(S,-,R j) or RF

RO(Ai,M ,) is obtained, it can be used to implement new inversion approaches. The first
of these approaches constrains the key features of the velocity or resistivity model
without utilizing complex 3-D algorithms. This method was suggested for seismic TTFs
by Novotny (1988). At several (or even each) midpoints selected within the study area,

common-midpoint profiles will be extracted from the TTF (RF) traversing the study area
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at several azimuths. The profiles will be examined by using 1-D inversion methods for
locations of boundaries and velocity (or resistivity) variations, and the final model will be
determined by comparing or merging these 1-D models. For the present shallow work, it
will be particularly interesting to correlate the variations of the model with surface
topography.

The second new inversion method applies specifically to resistivity or IP
problems and utilize the inversion methodology accepted in this field. The usual
approach to 2-D or 3-D multichannel resistivity inversion or ERT (electrical resistivity
tomography) consists in extracting some suitable 4-electrode groups (AB,MN) from the
data which would be spaced as uniformly as possible, have similar orientations, and
contain a range of dimensions covering the target depths. Unfortunately, this selection is
practically impossible with real data because the existing 3-D arrays are usually irregular

in shapes and strongly biased toward shorter electrode spacings.

The RF method allows us to resolve the above problem and produce a perfectly
regular set of “virtual” (AB,MN) arrays with controlled densities of sampling at any
depth. Once the corrected RF RO(Pl , Pz) is derived for arbitrary locations P; and P>, it can
predict readings for arbitrary electrical-resistivity experiments in the area. Thus, we can
construct a grid of equal-sized and regularily-spaced 4-electrode arrays directly from 3-D
field resistivity data. These reciprocal-error free and regularly-spaced and shaped
“virtual” data can be used to plot pseudo-depth volumes or invert them using standard

inversion algorithms, ensuring good stability and quality of the inversion.

... need to add sections about results and conclusions ...

Conclusions
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The improvement in the resistivity analysis method made in this work should also

apply to the analysis and presentation of Induced Polarization (IP) data.
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